3.2386 \(\int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)^{5/2}} \, dx\)

Optimal. Leaf size=137 \[ \frac {17825 \sqrt {1-2 x}}{12 \sqrt {5 x+3}}-\frac {655 \sqrt {1-2 x}}{4 (5 x+3)^{3/2}}+\frac {235 \sqrt {1-2 x}}{12 (3 x+2) (5 x+3)^{3/2}}+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^{3/2}}-\frac {40787 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{4 \sqrt {7}} \]

[Out]

-40787/28*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3+5*x)^(1/2))*7^(1/2)-655/4*(1-2*x)^(1/2)/(3+5*x)^(3/2)+7/6*(1-2*x
)^(1/2)/(2+3*x)^2/(3+5*x)^(3/2)+235/12*(1-2*x)^(1/2)/(2+3*x)/(3+5*x)^(3/2)+17825/12*(1-2*x)^(1/2)/(3+5*x)^(1/2
)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {98, 151, 152, 12, 93, 204} \[ \frac {17825 \sqrt {1-2 x}}{12 \sqrt {5 x+3}}-\frac {655 \sqrt {1-2 x}}{4 (5 x+3)^{3/2}}+\frac {235 \sqrt {1-2 x}}{12 (3 x+2) (5 x+3)^{3/2}}+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^{3/2}}-\frac {40787 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{4 \sqrt {7}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(3/2)/((2 + 3*x)^3*(3 + 5*x)^(5/2)),x]

[Out]

(-655*Sqrt[1 - 2*x])/(4*(3 + 5*x)^(3/2)) + (7*Sqrt[1 - 2*x])/(6*(2 + 3*x)^2*(3 + 5*x)^(3/2)) + (235*Sqrt[1 - 2
*x])/(12*(2 + 3*x)*(3 + 5*x)^(3/2)) + (17825*Sqrt[1 - 2*x])/(12*Sqrt[3 + 5*x]) - (40787*ArcTan[Sqrt[1 - 2*x]/(
Sqrt[7]*Sqrt[3 + 5*x])])/(4*Sqrt[7])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)^{5/2}} \, dx &=\frac {7 \sqrt {1-2 x}}{6 (2+3 x)^2 (3+5 x)^{3/2}}+\frac {1}{6} \int \frac {\frac {279}{2}-202 x}{\sqrt {1-2 x} (2+3 x)^2 (3+5 x)^{5/2}} \, dx\\ &=\frac {7 \sqrt {1-2 x}}{6 (2+3 x)^2 (3+5 x)^{3/2}}+\frac {235 \sqrt {1-2 x}}{12 (2+3 x) (3+5 x)^{3/2}}+\frac {1}{42} \int \frac {\frac {51303}{4}-16450 x}{\sqrt {1-2 x} (2+3 x) (3+5 x)^{5/2}} \, dx\\ &=-\frac {655 \sqrt {1-2 x}}{4 (3+5 x)^{3/2}}+\frac {7 \sqrt {1-2 x}}{6 (2+3 x)^2 (3+5 x)^{3/2}}+\frac {235 \sqrt {1-2 x}}{12 (2+3 x) (3+5 x)^{3/2}}-\frac {1}{693} \int \frac {\frac {5790477}{8}-\frac {1361745 x}{2}}{\sqrt {1-2 x} (2+3 x) (3+5 x)^{3/2}} \, dx\\ &=-\frac {655 \sqrt {1-2 x}}{4 (3+5 x)^{3/2}}+\frac {7 \sqrt {1-2 x}}{6 (2+3 x)^2 (3+5 x)^{3/2}}+\frac {235 \sqrt {1-2 x}}{12 (2+3 x) (3+5 x)^{3/2}}+\frac {17825 \sqrt {1-2 x}}{12 \sqrt {3+5 x}}+\frac {2 \int \frac {310919301}{16 \sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx}{7623}\\ &=-\frac {655 \sqrt {1-2 x}}{4 (3+5 x)^{3/2}}+\frac {7 \sqrt {1-2 x}}{6 (2+3 x)^2 (3+5 x)^{3/2}}+\frac {235 \sqrt {1-2 x}}{12 (2+3 x) (3+5 x)^{3/2}}+\frac {17825 \sqrt {1-2 x}}{12 \sqrt {3+5 x}}+\frac {40787}{8} \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx\\ &=-\frac {655 \sqrt {1-2 x}}{4 (3+5 x)^{3/2}}+\frac {7 \sqrt {1-2 x}}{6 (2+3 x)^2 (3+5 x)^{3/2}}+\frac {235 \sqrt {1-2 x}}{12 (2+3 x) (3+5 x)^{3/2}}+\frac {17825 \sqrt {1-2 x}}{12 \sqrt {3+5 x}}+\frac {40787}{4} \operatorname {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )\\ &=-\frac {655 \sqrt {1-2 x}}{4 (3+5 x)^{3/2}}+\frac {7 \sqrt {1-2 x}}{6 (2+3 x)^2 (3+5 x)^{3/2}}+\frac {235 \sqrt {1-2 x}}{12 (2+3 x) (3+5 x)^{3/2}}+\frac {17825 \sqrt {1-2 x}}{12 \sqrt {3+5 x}}-\frac {40787 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{4 \sqrt {7}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 79, normalized size = 0.58 \[ \frac {\sqrt {1-2 x} \left (802125 x^3+1533090 x^2+975325 x+206524\right )}{12 (3 x+2)^2 (5 x+3)^{3/2}}-\frac {40787 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{4 \sqrt {7}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^3*(3 + 5*x)^(5/2)),x]

[Out]

(Sqrt[1 - 2*x]*(206524 + 975325*x + 1533090*x^2 + 802125*x^3))/(12*(2 + 3*x)^2*(3 + 5*x)^(3/2)) - (40787*ArcTa
n[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(4*Sqrt[7])

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 116, normalized size = 0.85 \[ -\frac {122361 \, \sqrt {7} {\left (225 \, x^{4} + 570 \, x^{3} + 541 \, x^{2} + 228 \, x + 36\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \, {\left (802125 \, x^{3} + 1533090 \, x^{2} + 975325 \, x + 206524\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{168 \, {\left (225 \, x^{4} + 570 \, x^{3} + 541 \, x^{2} + 228 \, x + 36\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x)^(5/2),x, algorithm="fricas")

[Out]

-1/168*(122361*sqrt(7)*(225*x^4 + 570*x^3 + 541*x^2 + 228*x + 36)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3
)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 14*(802125*x^3 + 1533090*x^2 + 975325*x + 206524)*sqrt(5*x + 3)*sqrt(-2*x
 + 1))/(225*x^4 + 570*x^3 + 541*x^2 + 228*x + 36)

________________________________________________________________________________________

giac [B]  time = 2.16, size = 372, normalized size = 2.72 \[ -\frac {1}{48} \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{3} + \frac {40787}{560} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} + \frac {101}{2} \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )} + \frac {165 \, \sqrt {10} {\left (89 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{3} + \frac {21224 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}{\sqrt {5 \, x + 3}} - \frac {84896 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{2 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x)^(5/2),x, algorithm="giac")

[Out]

-1/48*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5)
- sqrt(22)))^3 + 40787/560*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x
 + 5) - sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 101/2*sqrt(10)*((sqrt(2)*sqrt(-10*
x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))) + 165/2*sqrt(10)*(89*
((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3
+ 21224*(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 84896*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sq
rt(22)))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqr
t(22)))^2 + 280)^2

________________________________________________________________________________________

maple [B]  time = 0.02, size = 250, normalized size = 1.82 \[ \frac {\left (27531225 \sqrt {7}\, x^{4} \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+69745770 \sqrt {7}\, x^{3} \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+11229750 \sqrt {-10 x^{2}-x +3}\, x^{3}+66197301 \sqrt {7}\, x^{2} \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+21463260 \sqrt {-10 x^{2}-x +3}\, x^{2}+27898308 \sqrt {7}\, x \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+13654550 \sqrt {-10 x^{2}-x +3}\, x +4404996 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+2891336 \sqrt {-10 x^{2}-x +3}\right ) \sqrt {-2 x +1}}{168 \left (3 x +2\right )^{2} \sqrt {-10 x^{2}-x +3}\, \left (5 x +3\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x+1)^(3/2)/(3*x+2)^3/(5*x+3)^(5/2),x)

[Out]

1/168*(27531225*7^(1/2)*x^4*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+69745770*7^(1/2)*x^3*arctan(1/1
4*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+66197301*7^(1/2)*x^2*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2
))+11229750*(-10*x^2-x+3)^(1/2)*x^3+27898308*7^(1/2)*x*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+2146
3260*(-10*x^2-x+3)^(1/2)*x^2+4404996*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+13654550*(-10*
x^2-x+3)^(1/2)*x+2891336*(-10*x^2-x+3)^(1/2))*(-2*x+1)^(1/2)/(3*x+2)^2/(-10*x^2-x+3)^(1/2)/(5*x+3)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 1.30, size = 172, normalized size = 1.26 \[ \frac {40787}{56} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) - \frac {17825 \, x}{6 \, \sqrt {-10 \, x^{2} - x + 3}} + \frac {18611}{12 \, \sqrt {-10 \, x^{2} - x + 3}} + \frac {13439 \, x}{18 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}} + \frac {343}{54 \, {\left (9 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x^{2} + 12 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x + 4 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}\right )}} + \frac {11123}{108 \, {\left (3 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x + 2 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}\right )}} - \frac {1613}{4 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x)^(5/2),x, algorithm="maxima")

[Out]

40787/56*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) - 17825/6*x/sqrt(-10*x^2 - x + 3) + 18611/1
2/sqrt(-10*x^2 - x + 3) + 13439/18*x/(-10*x^2 - x + 3)^(3/2) + 343/54/(9*(-10*x^2 - x + 3)^(3/2)*x^2 + 12*(-10
*x^2 - x + 3)^(3/2)*x + 4*(-10*x^2 - x + 3)^(3/2)) + 11123/108/(3*(-10*x^2 - x + 3)^(3/2)*x + 2*(-10*x^2 - x +
 3)^(3/2)) - 1613/4/(-10*x^2 - x + 3)^(3/2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (1-2\,x\right )}^{3/2}}{{\left (3\,x+2\right )}^3\,{\left (5\,x+3\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - 2*x)^(3/2)/((3*x + 2)^3*(5*x + 3)^(5/2)),x)

[Out]

int((1 - 2*x)^(3/2)/((3*x + 2)^3*(5*x + 3)^(5/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)/(2+3*x)**3/(3+5*x)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________